熱線(xiàn):021-56056830,66110819
手機:13564362870
熱線(xiàn):021-56056830,66110819
手機:13564362870
一、MBBR同步硝化反硝化的機理1、同步硝化反硝化生物脫氮(SND)
同步硝化反硝化脫氮技術(shù)(SND)是在同一個(gè)反應器內同時(shí)產(chǎn)生硝化、反硝化和除碳反應。它突破了傳統觀(guān)點(diǎn)認為硝化和反硝化不能同時(shí)發(fā)生的認識,尤其是好氧條件下,也可以發(fā)生反硝化反應,使得同步硝化和反硝化成為可能。
硝化過(guò)程消耗堿度,反硝化過(guò)程產(chǎn)生堿度,SND故能夠有效地保持反應器中pH值穩定,無(wú)需酸堿中和,無(wú)需外加碳源;節省反應器體積,縮短反應時(shí)間,通過(guò)降低硝態(tài)氮濃度可以減少二沉池污泥漂浮,因而SND成為生物脫氮的一個(gè)研究熱點(diǎn)。對于SND生物脫氮的可行性,目前有以下主要三種從不同角度出發(fā)得出的觀(guān)點(diǎn):
宏觀(guān)環(huán)境角度:
該觀(guān)點(diǎn)認為完全均勻混合狀態(tài)是不存在的,反應器內DO分布不均勻能夠形成好氧、缺氧、厭氧區域,在同一生物反應器缺氧/厭氧環(huán)境條件下可以發(fā)生反硝化反應,聯(lián)合區段內好氧環(huán)境中有機物去除和氨氮的硝化,SND是可以實(shí)現的。
微環(huán)境角度:
該觀(guān)點(diǎn)認為微生物絮體內的缺氧微環(huán)境是形成SND的主要原因,即由于氧的擴散(傳遞)限制,微生物絮體內存在溶解氧梯度,從而形成有利于實(shí)現同步硝化反硝化的微環(huán)境。
生物學(xué)角度:
該觀(guān)點(diǎn)認為特殊微生物種群的存在被認為是發(fā)生SND的主要原因,有的硝化細菌除了能夠進(jìn)行正常的硝化作用還能夠進(jìn)行反硝化作用,有荷蘭學(xué)者分離出既可進(jìn)行好氧硝化,又可進(jìn)行好氧反硝化的泛養硫球菌;還有一些細菌彼此合作,進(jìn)行序列反應,把氨轉化為氮氣,為在同一反應器在同一條件下完成生物脫氮提供了可能。
目前對生物脫氮的微生物學(xué)研究和解釋較多,但都不夠完善,對SND現象的認識仍在發(fā)展與探索之中。微環(huán)境理論是被普遍接受的,由于溶解氧梯度的存在,微生物絮體或生物膜的外表面溶解氧濃度高,以好氧硝化菌及氨化菌為主;深入內部,氧傳遞受阻及外部溶解氧大量的消耗而產(chǎn)生缺氧區,反硝化菌為優(yōu)勢菌種,故可導致同步硝化反硝化的發(fā)生。該理論解釋了在同一反應器中不同菌種共同存在的問(wèn)題,但也存在一個(gè)缺陷,即有機碳源問(wèn)題。有機碳源既是異養反硝化的電子供體,又是硝化過(guò)程的抑制物質(zhì),污水中的有機碳源在穿過(guò)好氧層時(shí),首先被好氧氧化,處于缺氧區的反硝化菌由于得不到電子供體而降低了反硝化速率,可能影響SND的脫氮效率,故同步硝化反硝化的機理仍需要進(jìn)一步完善。
二、MBBR生物移動(dòng)床同步硝化反硝化脫氮機理
MBBR是結合懸浮生長(cháng)的活性污泥法和附著(zhù)生長(cháng)的生物膜法的高效新型反應器,基本設計原理是將比重接近水、可懸浮于水中的懸浮填料直接投加到反應池中作為微生物的活性載體,懸浮填料能與污水頻繁多次接觸,逐漸在填料表面生長(cháng)出生物膜(掛膜),強化了污染物、溶解氧和生物膜的傳質(zhì)效果,即而MBBR被稱(chēng)為“移動(dòng)的生物膜”?;谄馭ND機理研究,綜合微環(huán)境和生物學(xué)理論,MBBR生物膜內SND可能存在的反應模式是,分布于生物膜好氧層的好氧氨氧化菌、亞硝酸鹽氧化菌和好氧反硝化細菌與分布于生物缺氧層的厭氧氨氧化菌、自養型亞硝酸細菌和反硝化細菌相互協(xié)作,最終達到脫氮目的。
MBBR是依靠曝氣池內的曝氣和水流的提升作用使載體處于流化狀態(tài),進(jìn)而形成懸浮生長(cháng)的活性污泥和附著(zhù)生長(cháng)的生物膜,充分發(fā)揮附著(zhù)相和懸浮相生物兩者的優(yōu)越性,不僅提供了宏觀(guān)和微觀(guān)的好氧和厭氧環(huán)境,還解決了自養硝化菌、異養反硝化菌與異養細菌的DO之爭和碳源之爭。故MBBR可實(shí)現硝化和反硝化兩個(gè)過(guò)程的動(dòng)力學(xué)平衡,具有同步硝化反硝化非常良好的條件,能實(shí)現MBBR同步硝化反硝化脫氮。
三、MBBR同步硝化反硝化的影響因素
實(shí)現MBBR同步硝化反硝化的關(guān)鍵技術(shù)是控制MBBR內硝化和反硝化的反應動(dòng)力學(xué)平衡,解決自養硝化菌和異養細菌的DO之爭及反硝化菌和異養細菌的碳源之爭等,故實(shí)現其主要控制因素有:碳氮比、溶解氧濃度、溫度和酸堿度等。
1、填料對MBBR法的影響
MBBR法的技術(shù)關(guān)鍵在于比重接近于水、輕微攪拌下易于隨水自由運動(dòng)的生物填料。通常填料由聚乙烯塑料制成,每一個(gè)載體的外形為直徑10mm、高8mm的小圓柱體,圓柱體中有十字支撐,外壁有突出的豎條狀鰭翅,填料中空部分占整個(gè)體積的0.95,即在一個(gè)充滿(mǎn)水和填料的容器中,每一個(gè)填料中水占的體積為95%??紤]到填料旋轉以及總容器容積,填料的填充比被定義為載體所占空問(wèn)的比例,為了達到最好的混合效果,填料的填充比最大為0.7。理論上填料總的比表面積是按照每一單位體積生物載體比表面積的數量來(lái)定義的,一般為700㎡/m3。當生物膜在載體內部生長(cháng)時(shí),實(shí)際有效利用的比表面積約為500㎡/m3。
此類(lèi)型的生物填料有利于微生物在填料內側附著(zhù)生長(cháng),形成較穩定的生物膜,并且容易形成流化狀態(tài)。當預處理要求較低或污水中含有大量纖維物質(zhì)時(shí),例如在市政污水處理中不采用初沉池或者在處理含有大量纖維的造紙廢水時(shí),采用比表面積較小、尺寸較大的生物填料,當已有較好的預處理或用于硝化時(shí),采用比表面積大的生物填料。
2、溶解氧(DO)對MBBR法的影響
DO濃度是影響同步硝化一反硝化的一個(gè)主要的限制因素,通過(guò)對DO濃度的控制,可使生物膜的不同部位形成好氧區或缺氧區,這樣便具有了實(shí)現同步硝化一反硝化的物理條件。
從理論上講,當DO質(zhì)量濃度過(guò)于高時(shí),DO能穿透到生物膜內部,使其內部難以形成缺氧區,大量的氨氮被氧化為硝酸鹽和亞硝酸鹽,使得出水TN仍然很高;反之,如果DO濃度很低,就會(huì )造成生物膜內部很大比例的厭氧區,生物膜反硝化能力增強(出水硝氮和亞硝氮濃度都很低),但由于DO供應不足,MBBR工藝硝化效果下降,使得出水氨氮濃度上升,從而導致出水TN上升,影響最終的處理效果。
通過(guò)研究最終得出了MBBR法處理城市生活污水DO的一個(gè)最佳值:當DO質(zhì)量濃度在2mg/L以上時(shí),DO對MBBR硝化效果的影響不大,氨氮的去除率可達97%-99%,出水氨氮都能保持在1.0mg/L以下;DO質(zhì)量濃度在1.0mg/L左右時(shí),氨氮的去除率在84%左右,出水氨氮濃度有明顯上升。另外,曝氣池內DO也不宜過(guò)高,溶解氧過(guò)高能夠導致有機污染物分解過(guò)快,從而使微生物缺乏營(yíng)養,活性污泥易于老化,結構松散。此外,DO過(guò)高,過(guò)量耗能,在經(jīng)濟上也是不適宜的。
因為MBBR法主要是通過(guò)懸浮填料來(lái)實(shí)現最終的污水處理,所以DO對懸浮填料的影響也是影響整個(gè)處理結果的關(guān)鍵。有研究表明反應器的充氧能力在一定范圍內隨著(zhù)懸浮填料填充率的增大而增大。在曝氣的作用下,水隨填料一起流化,水流紊動(dòng)程度較無(wú)填料時(shí)大,加速了氣液界面的更新和氧的轉移,使氧的轉移速率提高。隨著(zhù)填料數量的增多,填料、氣流和水流三者之間的這種切割作用和紊動(dòng)作用不斷加強。但加入填料量為60%時(shí),填料在水中的流化效果變差,水體紊動(dòng)程度也降低,使得氧的傳遞速率下降,氧的利用率降低。所以針對不同類(lèi)型的水質(zhì),控制好DO的量對整個(gè)工藝最終的處理結果是至關(guān)重要的。
3、水力停留時(shí)間對MBBR工藝的影響
合適的水力停留時(shí)間(HRT)是確保凈化效果和工程投資經(jīng)濟性的重要控制因素。水力停留時(shí)間的長(cháng)短將直接影響到水中有機物與生物膜的接觸時(shí)間,進(jìn)而影響微生物對有機物的吸附和降解效率,所以針對不同的污水類(lèi)型找出經(jīng)濟而合理的HRT是非常關(guān)鍵的問(wèn)題之一。
另外還有試驗結果表明:在中低氨氮負荷條件下,隨HRT的減少,氨氮填料表面負荷逐步升高,同時(shí)去除率維持原有水平或有一定增長(cháng);當氨氮負荷升至高水平后,隨著(zhù)HRT的減少,氨氮去除率逐步降低。這些針對HRT的實(shí)驗研究結果為今后MBBR法的推廣應用奠定了基礎,但同時(shí)也有許多需要改進(jìn)之處,比如試驗只是單純的考慮HRT本身的影響,沒(méi)有把其他因素與HRT的關(guān)系有機的結合起來(lái),在研究中將HRT和其他因素有機的結合起來(lái)進(jìn)行探討,不僅找到實(shí)驗最重要的影響因素,同時(shí)實(shí)驗過(guò)程中各因素之間的相互影響、相互制約關(guān)系也得到了很好地體現。所以針對影響因素的研究我們需要更全面更綜合的考慮。
4、水溫對MBBR法的影響
在影響微生物生理活動(dòng)的各項因素中,溫度的作用非常重要。溫度適宜,能夠促進(jìn)、強化微生物的生理活動(dòng);溫度不適宜,能夠減弱甚至破壞微生物的生理活動(dòng)。溫度不適宜還能夠導致微生物形態(tài)和生理特性的改變,甚至可能使微生物死亡。而微生物的最適溫度是指在這一溫度條件下,微生物的生理活動(dòng)強勁、旺盛,表現在增殖方面則是裂殖速度快、世代時(shí)間短。
MBBR法主要是通過(guò)生物膜中各種類(lèi)型微生物的新陳代謝來(lái)達到對污水中有機污染物的降解,所以生物膜生長(cháng)的好壞將直接關(guān)系到廢水處理的最終結果,尤其對于硝化菌、反硝化菌而言,它們的生長(cháng)周期長(cháng),且對環(huán)境的變化非常敏感,硝化菌的適宜溫度是20℃-30℃,反硝化菌的適宜溫度是20℃-40℃,溫度低于15℃時(shí),這兩類(lèi)細菌的活性均降低,5~C是完全停止,所以溫度的變化將直接影響這類(lèi)細菌的生長(cháng)。相關(guān)實(shí)驗結果表明,氨氮填料表面負荷的變化基本與水溫的變化趨勢一致。水溫低時(shí)填料表面負荷低,水溫高時(shí)填料表面負荷約達到水溫低時(shí)的15倍。由此可見(jiàn),硝化細菌受溫度影響大,低溫條件下活性較弱。
5、pH值對MBBR法的影響
微生物的生理活動(dòng)與環(huán)境的酸堿度密切相關(guān),只有在適宜的酸堿度條件下,微生物才能進(jìn)行正常的生理活動(dòng)。pH值過(guò)大的偏離適宜數值,微生物的酶系統的催化功能就會(huì )減弱,甚至消失。不同種屬的微生物生理活動(dòng)適應的pH值,都有一定的范圍,在這一范圍內,還可分為最低pH值、最適pH值和最高pH值。在最低或最高的pH環(huán)境中,微生物雖然能夠成活,但生理活動(dòng)微弱,易于死亡,增殖速率大為降低。
參與污水生物處理的微生物,一般最佳的pH值范圍,介于6.5-8.5之間。MBBR法作為生物膜法與活性污泥法相結合的工藝,同樣依賴(lài)于微生物的生長(cháng)以達到有機物降解的目的。所以保持微生物最佳pH范圍是取得良好污水處理效果的必要條件,當污水(特別是工業(yè)廢水)的pH值變化較大時(shí),需要考慮設調節池,使污水的pH值調節到適宜范圍后再進(jìn)行曝氣。
6、其他因素對MBBR法的影響
根據每一個(gè)具體試驗條件的不同,還會(huì )有許多不同的影響因素。如氣水比一般控制在(3~4),這樣的氣量能使反應器中的填料均勻地循環(huán)轉動(dòng)起來(lái);濁度也需要控制在一定范圍內,相關(guān)研究結果表明:濁度大使得某些懸浮物容易覆蓋在生物膜的表面,阻礙生物氧化作用的進(jìn)行,導致處理效率大幅下降,同時(shí)還容易造成填料堵塞,另外整個(gè)實(shí)驗對進(jìn)水濁度和出水濁度進(jìn)行了檢測,進(jìn)水濁度為17.6-160NTU,出水濁度為18.1-142NTU,結果發(fā)現中試裝置對濁度基本沒(méi)有去除效果,出水濁度隨著(zhù)進(jìn)水濁度的變化而變化,所以我們需要嚴格控制好進(jìn)水濁度的量;COD容積負荷對去除率也有很大的影響,研究表明COD容積負荷為0.48-2.93kg/(m3?d)的范圍內對COD的去除率基本穩定在60%-80%。
在相同的水力停留時(shí)間下COD的去除率隨負荷呈正比增加趨勢,這是因為當進(jìn)水COD濃度較低時(shí)微生物降解有機物的速率也較小,其降解能力不能充分發(fā)揮,當進(jìn)水COD濃度增大時(shí)促進(jìn)了生物膜微生物的生長(cháng),提高了降解速率,故對COD去除率得到了提高。以上各因素都會(huì )對污水處理造成不同程度的影響,此外還有營(yíng)養物質(zhì)、有毒物質(zhì)等,如果這些物質(zhì)過(guò)多的偏離微生物生長(cháng)需要,就會(huì )對污水處理的最終結果產(chǎn)生影響。我們須根據具體的條件和要求來(lái)確定哪一個(gè)因素是主要影響MBBR法的最終結果。
四、MBBR生物脫氮應用現狀和前景
MBBR不僅建設周期短、投資省、運行費用低、管理簡(jiǎn)單方便和集中與分散處理皆適宜,而且工藝運行穩定可靠,抗沖擊負荷能力強,是一種經(jīng)濟高效的污水處理工藝。國外學(xué)者針對MBBR對有機物的去除及脫氮除磷的機理和影響因素有較為深入的研究,且在城市生活污水、小型污水廠(chǎng)深度處理的設計,已有超負荷運轉的活性污泥處理系統的改造,垃圾滲濾液處理,造紙和食品工業(yè)廢水等水處理已有較廣泛的應用。在國內低濃度生活污水、少數工業(yè)廢水及污水深度處理回用等工程治理中也對MBBR有少量的應用,MBBR作為脫氮工藝的處理單元,并對MBBR生物硝化特性、反硝化特性研究。
具有能耗低、投資省、池容小及容易保持pH值等諸多優(yōu)勢,加之處于活性污泥法和固定生物膜法之間的MBBR移動(dòng)床生物膜反應器逐漸得到應用,MBBR同步硝化反硝化生物脫氮技術(shù)具有廣闊的市場(chǎng)空間,這也賦予了MBBR同步硝化反硝化生物脫氮研究的現實(shí)意義。
基于目前的研究,應對MBBR同步硝化反硝化的作用機理和動(dòng)力學(xué)模型做更深一步的探索;對MBBR同步硝化反硝化運行條件、影響因素進(jìn)行進(jìn)一步研究,為生物膜間的好氧細菌、厭氧細菌及異養細菌等細菌提供良好的代謝條件;加強特殊菌種的篩選,提高M(jìn)BBR系統脫氮效率,為MBBR同步硝化反硝化生物脫氮技術(shù)的應用做好理論準備。